Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA
نویسندگان
چکیده
As a kind of clean and renewable energy, wind power is winning more and more attention across the world. Regarding wind power utilization, safety is a core concern and such concern has led to many studies on predicting wind speed. To obtain a more accurate prediction of the wind speed, this paper adopts a new hybrid forecasting model, combing empirical mode decomposition (EMD) and the general regression neural network (GRNN) optimized by the fruit fly optimization algorithm (FOA). In this new model, the original wind speed series are first decomposed into a collection of intrinsic mode functions (IMFs) and a residue. Next, the inherent relationship (partial correlation) of the datasets is analyzed, and the results are then used to select the input for the forecasting model. Finally, the GRNN with the FOA to optimize the smoothing factor is used to predict each sub-series. The mean absolute percentage error of the forecasting results in two cases are respectively 8.95% and 9.87%, suggesting that the hybrid approach outperforms the compared models, which provides guidance for future wind speed forecasting.
منابع مشابه
The General Regression Neural Network Based on the Fruit Fly Optimization Algorithm and the Data Inconsistency Rate for Transmission Line Icing Prediction
Accurate and stable prediction of icing thickness on transmission lines is of great significance for ensuring the safe operation of the power grid. In order to improve the accuracy and stability of icing prediction, an innovative prediction model based on the generalized regression neural network (GRNN) and the fruit fly optimization algorithm (FOA) is proposed. Firstly, a feature selection met...
متن کاملEmpirical Mode Decomposition-k Nearest Neighbor Models for Wind Speed Forecasting
Hybrid model is a popular forecasting model in renewable energy related forecasting applications. Wind speed forecasting, as a common application, requires fast and accurate forecasting models. This paper introduces an Empirical Mode Decomposition (EMD) followed by a k Nearest Neighbor (kNN) hybrid model for wind speed forecasting. Two configurations of EMD-kNN are discussed in details: an EMD-...
متن کاملA Novel Strategy for Wind Speed Prediction in Wind Farm
The empirical mode decomposition (EMD) is well known for predicting wind speed.However, but the joint application of relevance vector machine (RVM) and empirical mode decomposition in wind speed forecasting is seldom found in the field. This paper proposes a relevance vector machine model based on empirical mode decomposition to predict the wind speed. Before the wind speed forecasting with RVM...
متن کاملHour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition
Operation of wind power generation in a large farm is quite challenging in a smart grid owing to uncertain weather conditions. Consequently, operators must accurately forecast wind speed/power in the dispatch center to carry out unit commitment, real power scheduling and economic dispatch. This work presents a novel method based on the integration of empirical mode decomposition (EMD) with arti...
متن کاملA hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
0950-7051/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.knosys.2012.08.015 ⇑ Corresponding author. Tel.: +86 15811424568; fa E-mail address: [email protected] (S. Guo). Accurate annual power load forecasting can provide reliable guidance for power grid operation and power construction planning, which is also important for the sustainable development of electric power indus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017